[完结8周]LLM大语言模型算法特训,带你转型AI大语言模型算法工程师

udbmaidns · · 1600 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。
![1.png](http://static.itsharecircle.com/240203/f48f86543178141dfbd806918149776f.png) 一、大语言模型(LLM)是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。 二、这个大语言模型到底有多大? 拿 GPT 来说, GPT 其实出现了好几代,GPT 3 它有 45 个 t b 的训练数据,那么整个维基百科里面的数据只相当于他训练数据的 0. 6%。我们在这个训练的时候把这个东西称作语料,就语言材料,这个语料的量是可以说是集中到我们人类所有语言文明的精华在里面,这是一个非常非常庞大的一个数据库。 三、大模型的能力 2.1 涌现能力(emergent abilities) 区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力指的是一种令人惊讶的能力,它在小型模型中不明显,但在大型模型中显著出现。可以类比到物理学中的相变现象,涌现能力的显现就像是模型性能随着规模增大而迅速提升,超过了随机水平,也就是我们常说的量变引起了质变。 具体来说,涌现能力可以定义为与某些复杂任务相关的能力,但我们更关注的是它们具备的通用能力,也就是能够应用于解决各种任务的能力。接下来,让我们简要介绍三个典型的LLM涌现能力: 上下文学习:上下文学习能力是由 GPT-3 首次引入的。这种能力允许语言模型在提供自然语言指令或多个任务示例的情况下,通过理解上下文并生成相应输出的方式来执行任务,而无需额外的训练或参数更新。 指令遵循:通过使用自然语言描述的多任务数据进行微调,也就是所谓的指令微调,LLM 被证明在同样使用指令形式化描述的未见过的任务上表现良好。这意味着LLM能够根据任务指令执行任务,而无需事先见过具体示例,这展示了其强大的泛化能力。 逐步推理:小型语言模型通常难以解决涉及多个推理步骤的复杂任务,例如数学问题。然而,LLM通过采用"思维链"推理策略,可以利用包含中间推理步骤的提示机制来解决这些任务,从而得出最终答案。据推测,这种能力可能是通过对代码的训练获得的。 四、大型语言模型如何工作? 大型语言模型使用一种称为无监督学习的技术来工作。在无监督学习中,模型是在没有任何特定标签或目标的情况下在大量数据上训练的。目标是学习数据的底层结构,并使用它来生成结构与原始数据相似的新数据。 对于大型语言模型,用于训练的数据通常是大型文本语料库。该模型学习文本数据中的模式,并使用它们来生成新文本。训练过程包括优化模型参数,以最小化语料库中生成的文本与实际文本之间的差异。
1600 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传