复杂数据类型
除了前面说到的简单数据类型,Elasticsearch还支持JSON 的null ,数组,和对象.
空域
字段取值可以为空,当然,数组也可以为空。 然而,在 Lucene 中是不能存储 null 值的,所以我们认为存在 null 值的域为空域。
下面三种域被认为是空的,它们将不会被索引:
"null_value": null,
"empty_array": [],
"array_with_null_value": [ null ]
数组域
很多时候,我们希望 tag 域 包含多个标签。我们可以以数组的形式索引标签:
{ "tag": [ "search", "nosql" ]}
对于数组,没有特殊的映射需求。任何域都可以包含0、1或者多个值,就像全文域分析得到多个词条。
这暗示 数组中所有的值必须是相同数据类型的 。你不能将日期和字符串混在一起。如果你通过索引数组来创建新的域,Elasticsearch 会用数组中第一个值的数据类型作为这个域的 类型 。
注意:
当你从 Elasticsearch 得到一个文档,每个数组的顺序和你当初索引文档时一样。你得到的 _source 域,包含与你索引的一模一样的 JSON 文档。
但是,数组是以多值域 索引的—可以搜索,但是无序的。 在搜索的时候,你不能指定 “第一个” 或者 “最后一个”。 更确切的说,把数组想象成 装在袋子里的值 。
多层级对象
内部对象 经常用于嵌入一个实体或对象到其它对象中。例如,与其在 tweet 文档中包含 user_name 和 user_id 域,我们也可以这样写:
{
"tweet": "Elasticsearch is very flexible",
"user": {
"id": "@johnsmith",
"gender": "male",
"age": 26,
"name": {
"full": "John Smith",
"first": "John",
"last": "Smith"
}
}
}
内部对象的映射
Elasticsearch 会动态监测新的对象域并映射它们为 对象 ,在 Elasticsearch 6之前properties 属性下列出内部域:
{
"gb": {
"tweet":
"properties": {
"tweet": { "type": "string" },
"user": {
"type": "object",
"properties": {
"id": { "type": "string" },
"gender": { "type": "string" },
"age": { "type": "long" },
"name": {
"type": "object",
"properties": {
"full": { "type": "string" },
"first": { "type": "string" },
"last": { "type": "string" }
}
}
}
}
}
}
}
}
user 和 name 域的映射结构与 tweet 类型的相同。事实上, type 映射只是一种特殊的 对象 映射,我们称之为 根对象 。除了它有一些文档元数据的特殊顶级域,例如 _source 和 _all 域,它和其他对象一样。
注:
elasticsearch6以后没有object类型了,默认嵌套处理了。elasticsearch6以后映射查询结果如下:
{
"test": {
"mappings": {
"test": {
"properties": {
"tweet": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"user": {
"properties": {
"age": {
"type": "long"
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"id": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"name": {
"properties": {
"first": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"full": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"last": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
}
}
}
}
内部对象的索引
Lucene 不支持内部对象。 Lucene 文档是由一组键值对列表组成的。为了能让 Elasticsearch 有效地索引内部类,它把我们的文档转化成这样:
{
"tweet": [elasticsearch, flexible, very],
"user.id": [@johnsmith],
"user.gender": [male],
"user.age": [26],
"user.name.full": [john, smith],
"user.name.first": [john],
"user.name.last": [smith]
}
内部域 可以通过名称引用(例如, first )。为了区分同名的两个域,我们可以使用全 路径 (例如, user.name.first ) 或 type 名加路径( tweet.user.name.first )。
在前面简单扁平的文档中,没有 user 和 user.name 域。Lucene 索引只有标量和简单值,没有复杂数据结构。
内部对象数组
假设我们有个 followers 内部对象数组:
{
"followers": [
{ "age": 35, "name": "Mary White"},
{ "age": 26, "name": "Alex Jones"},
{ "age": 19, "name": "Lisa Smith"}
]
}
这个文档会像我们之前描述的那样被扁平化处理,结果如下所示:
{
"followers.age": [19, 26, 35],
"followers.name": [alex, jones, lisa, smith, mary, white]
}
但是这里有一个问题,{age: 35}
和 {name: Mary White}
之间的相关性已经丢失了,因为每个多值域只是一包无序的值,而不是有序数组。这足以让我们问,“有一个26岁的追随者?”
但是我们不能得到一个准确的答案:“是否有一个26岁 名字叫 Alex Jones 的追随者?”
嵌套对象
考虑到上面内部对象数组的问题,我们看下面的例子:
由于在 Elasticsearch 中单个文档的增删改都是原子性操作,那么将相关实体数据都存储在同一文档中也就理所当然。 比如说,我们可以将订单及其明细数据存储在一个文档中。又比如,我们可以将一篇博客文章的评论以一个 comments 数组的形式和博客文章放在一起:
PUT /my_index/blogpost/1
{
"title": "Nest eggs",
"body": "Making your money work...",
"tags": [ "cash", "shares" ],
"comments": [
{
"name": "John Smith",
"comment": "Great article",
"age": 28,
"stars": 4,
"date": "2014-09-01"
},
{
"name": "Alice White",
"comment": "More like this please",
"age": 31,
"stars": 5,
"date": "2014-10-22"
}
]
}
如果我们依赖字段自动映射,那么 comments 字段会自动映射为 object 类型。
由于所有的信息都在一个文档中,当我们查询时就没有必要去联合文章和评论文档,查询效率就很高。
但是当我们使用如下查询时,上面的文档也会被当做是符合条件的结果:
GET /my_index/blogpost/_search
{
"query": {
"bool": {
"must": [
{ "match": { "name": "Alice" }},
{ "match": { "age": 28 }}
]
}
}
}
Alice实际是31岁,不是28!
注:
elasticsearch6之后的版本没有整个问题,被解决了,6之后的查询结果没有命中,结果如下:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}
正如我们在 对象数组 中讨论的一样,出现上面这种问题的原因是 JSON 格式的文档被处理成如下的扁平式键值对的结构。
{
"title": [ eggs, nest ],
"body": [ making, money, work, your ],
"tags": [ cash, shares ],
"comments.name": [ alice, john, smith, white ],
"comments.comment": [ article, great, like, more, please, this ],
"comments.age": [ 28, 31 ],
"comments.stars": [ 4, 5 ],
"comments.date": [ 2014-09-01, 2014-10-22 ]
}
Alice 和 31 、 John 和 2014-09-01 之间的相关性信息不再存在。虽然 object 类型 (参见 内部对象) 在存储 单一对象 时非常有用,但对于对象数组的搜索而言,毫无用处。
嵌套对象 就是来解决这个问题的。将 comments 字段类型设置为 nested 而不是 object 后,每一个嵌套对象都会被索引为一个 隐藏的独立文档 ,举例如下:
{ #第一个 嵌套文档
"comments.name": [ john, smith ],
"comments.comment": [ article, great ],
"comments.age": [ 28 ],
"comments.stars": [ 4 ],
"comments.date": [ 2014-09-01 ]
}
{ #第二个 嵌套文档
"comments.name": [ alice, white ],
"comments.comment": [ like, more, please, this ],
"comments.age": [ 31 ],
"comments.stars": [ 5 ],
"comments.date": [ 2014-10-22 ]
}
{ #根文档 或者也可称为父文档
"title": [ eggs, nest ],
"body": [ making, money, work, your ],
"tags": [ cash, shares ]
}
在独立索引每一个嵌套对象后,对象中每个字段的相关性得以保留。我们查询时,也仅仅返回那些真正符合条件的文档。
不仅如此,由于嵌套文档直接存储在文档内部,查询时嵌套文档和根文档联合成本很低,速度和单独存储几乎一样。
嵌套文档是隐藏存储的,我们不能直接获取。如果要增删改一个嵌套对象,我们必须把整个文档重新索引才可以。值得注意的是,查询的时候返回的是整个文档,而不是嵌套文档本身。
嵌套对象映射
设置一个字段为 nested 很简单 — 你只需要将字段类型 object 替换为 nested 即可:
PUT /my_index
{
"mappings": {
"blogpost": {
"properties": {
"comments": {
"type": "nested",
"properties": {
"name": { "type": "string" },
"comment": { "type": "string" },
"age": { "type": "short" },
"stars": { "type": "short" },
"date": { "type": "date" }
}
}
}
}
}
}