ElasticSearch学习笔记之九 复杂数据类型和嵌套对象_灵动的艺术的博客

CSDN博客 · · 1762 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

复杂数据类型

除了前面说到的简单数据类型,Elasticsearch还支持JSON 的null ,数组,和对象.

空域

字段取值可以为空,当然,数组也可以为空。 然而,在 Lucene 中是不能存储 null 值的,所以我们认为存在 null 值的域为空域。

下面三种域被认为是空的,它们将不会被索引:

"null_value":               null,
"empty_array":              [],
"array_with_null_value":    [ null ]

数组域

很多时候,我们希望 tag 域 包含多个标签。我们可以以数组的形式索引标签:

{ "tag": [ "search", "nosql" ]}

对于数组,没有特殊的映射需求。任何域都可以包含0、1或者多个值,就像全文域分析得到多个词条。

这暗示 数组中所有的值必须是相同数据类型的 。你不能将日期和字符串混在一起。如果你通过索引数组来创建新的域,Elasticsearch 会用数组中第一个值的数据类型作为这个域的 类型 。

注意:
当你从 Elasticsearch 得到一个文档,每个数组的顺序和你当初索引文档时一样。你得到的 _source 域,包含与你索引的一模一样的 JSON 文档。

但是,数组是以多值域 索引的—可以搜索,但是无序的。 在搜索的时候,你不能指定 “第一个” 或者 “最后一个”。 更确切的说,把数组想象成 装在袋子里的值 。

多层级对象

内部对象 经常用于嵌入一个实体或对象到其它对象中。例如,与其在 tweet 文档中包含 user_name 和 user_id 域,我们也可以这样写:

{
    "tweet":            "Elasticsearch is very flexible",
    "user": {
        "id":           "@johnsmith",
        "gender":       "male",
        "age":          26,
        "name": {
            "full":     "John Smith",
            "first":    "John",
            "last":     "Smith"
        }
    }
}

内部对象的映射

Elasticsearch 会动态监测新的对象域并映射它们为 对象 ,在 Elasticsearch 6之前properties 属性下列出内部域:

{
  "gb": {
    "tweet": 
      "properties": {
        "tweet":            { "type": "string" },
        "user": {
          "type":             "object",
          "properties": {
            "id":           { "type": "string" },
            "gender":       { "type": "string" },
            "age":          { "type": "long"   },
            "name":   { 
              "type":         "object",
              "properties": {
                "full":     { "type": "string" },
                "first":    { "type": "string" },
                "last":     { "type": "string" }
              }
            }
          }
        }
      }
    }
  }
}

user 和 name 域的映射结构与 tweet 类型的相同。事实上, type 映射只是一种特殊的 对象 映射,我们称之为 根对象 。除了它有一些文档元数据的特殊顶级域,例如 _source 和 _all 域,它和其他对象一样。

注:
elasticsearch6以后没有object类型了,默认嵌套处理了。elasticsearch6以后映射查询结果如下:

{
  "test": {
    "mappings": {
      "test": {
        "properties": {
          "tweet": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "user": {
            "properties": {
              "age": {
                "type": "long"
              },
              "gender": {
                "type": "text",
                "fields": {
                  "keyword": {
                    "type": "keyword",
                    "ignore_above": 256
                  }
                }
              },
              "id": {
                "type": "text",
                "fields": {
                  "keyword": {
                    "type": "keyword",
                    "ignore_above": 256
                  }
                }
              },
              "name": {
                "properties": {
                  "first": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  },
                  "full": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  },
                  "last": {
                    "type": "text",
                    "fields": {
                      "keyword": {
                        "type": "keyword",
                        "ignore_above": 256
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

内部对象的索引

Lucene 不支持内部对象。 Lucene 文档是由一组键值对列表组成的。为了能让 Elasticsearch 有效地索引内部类,它把我们的文档转化成这样:

{
    "tweet":            [elasticsearch, flexible, very],
    "user.id":          [@johnsmith],
    "user.gender":      [male],
    "user.age":         [26],
    "user.name.full":   [john, smith],
    "user.name.first":  [john],
    "user.name.last":   [smith]
}

内部域 可以通过名称引用(例如, first )。为了区分同名的两个域,我们可以使用全 路径 (例如, user.name.first ) 或 type 名加路径( tweet.user.name.first )。

在前面简单扁平的文档中,没有 user 和 user.name 域。Lucene 索引只有标量和简单值,没有复杂数据结构。

内部对象数组

假设我们有个 followers 内部对象数组:

{
    "followers": [
        { "age": 35, "name": "Mary White"},
        { "age": 26, "name": "Alex Jones"},
        { "age": 19, "name": "Lisa Smith"}
    ]
}

这个文档会像我们之前描述的那样被扁平化处理,结果如下所示:

{
    "followers.age":    [19, 26, 35],
    "followers.name":   [alex, jones, lisa, smith, mary, white]
}

但是这里有一个问题,{age: 35}{name: Mary White}之间的相关性已经丢失了,因为每个多值域只是一包无序的值,而不是有序数组。这足以让我们问,“有一个26岁的追随者?”

但是我们不能得到一个准确的答案:“是否有一个26岁 名字叫 Alex Jones 的追随者?”

嵌套对象

考虑到上面内部对象数组的问题,我们看下面的例子:

由于在 Elasticsearch 中单个文档的增删改都是原子性操作,那么将相关实体数据都存储在同一文档中也就理所当然。 比如说,我们可以将订单及其明细数据存储在一个文档中。又比如,我们可以将一篇博客文章的评论以一个 comments 数组的形式和博客文章放在一起:

PUT /my_index/blogpost/1
{
  "title": "Nest eggs",
  "body":  "Making your money work...",
  "tags":  [ "cash", "shares" ],
  "comments": [ 
    {
      "name":    "John Smith",
      "comment": "Great article",
      "age":     28,
      "stars":   4,
      "date":    "2014-09-01"
    },
    {
      "name":    "Alice White",
      "comment": "More like this please",
      "age":     31,
      "stars":   5,
      "date":    "2014-10-22"
    }
  ]
}

如果我们依赖字段自动映射,那么 comments 字段会自动映射为 object 类型。

由于所有的信息都在一个文档中,当我们查询时就没有必要去联合文章和评论文档,查询效率就很高。

但是当我们使用如下查询时,上面的文档也会被当做是符合条件的结果:

GET /my_index/blogpost/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "name": "Alice" }},
        { "match": { "age":  28      }} 
      ]
    }
  }
}

Alice实际是31岁,不是28!
注:
elasticsearch6之后的版本没有整个问题,被解决了,6之后的查询结果没有命中,结果如下:

{
  "took": 0,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}

正如我们在 对象数组 中讨论的一样,出现上面这种问题的原因是 JSON 格式的文档被处理成如下的扁平式键值对的结构。

{
  "title":            [ eggs, nest ],
  "body":             [ making, money, work, your ],
  "tags":             [ cash, shares ],
  "comments.name":    [ alice, john, smith, white ],
  "comments.comment": [ article, great, like, more, please, this ],
  "comments.age":     [ 28, 31 ],
  "comments.stars":   [ 4, 5 ],
  "comments.date":    [ 2014-09-01, 2014-10-22 ]
}

Alice 和 31 、 John 和 2014-09-01 之间的相关性信息不再存在。虽然 object 类型 (参见 内部对象) 在存储 单一对象 时非常有用,但对于对象数组的搜索而言,毫无用处。

嵌套对象 就是来解决这个问题的。将 comments 字段类型设置为 nested 而不是 object 后,每一个嵌套对象都会被索引为一个 隐藏的独立文档 ,举例如下:

{ #第一个 嵌套文档
  "comments.name":    [ john, smith ],
  "comments.comment": [ article, great ],
  "comments.age":     [ 28 ],
  "comments.stars":   [ 4 ],
  "comments.date":    [ 2014-09-01 ]
}
{ #第二个 嵌套文档
  "comments.name":    [ alice, white ],
  "comments.comment": [ like, more, please, this ],
  "comments.age":     [ 31 ],
  "comments.stars":   [ 5 ],
  "comments.date":    [ 2014-10-22 ]
}
{ #根文档 或者也可称为父文档
  "title":            [ eggs, nest ],
  "body":             [ making, money, work, your ],
  "tags":             [ cash, shares ]
}

在独立索引每一个嵌套对象后,对象中每个字段的相关性得以保留。我们查询时,也仅仅返回那些真正符合条件的文档。

不仅如此,由于嵌套文档直接存储在文档内部,查询时嵌套文档和根文档联合成本很低,速度和单独存储几乎一样。

嵌套文档是隐藏存储的,我们不能直接获取。如果要增删改一个嵌套对象,我们必须把整个文档重新索引才可以。值得注意的是,查询的时候返回的是整个文档,而不是嵌套文档本身。

嵌套对象映射

设置一个字段为 nested 很简单 —  你只需要将字段类型 object 替换为 nested 即可:


PUT /my_index
{
  "mappings": {
    "blogpost": {
      "properties": {
        "comments": {
          "type": "nested", 
          "properties": {
            "name":    { "type": "string"  },
            "comment": { "type": "string"  },
            "age":     { "type": "short"   },
            "stars":   { "type": "short"   },
            "date":    { "type": "date"    }
          }
        }
      }
    }
  }
}
1762 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传